
C++ Toolkit Book Getting Started

2-1

2. Getting Started
Created: April 1, 2003
Updated: February 4, 2004

Overview
The overview for this chapter consists of the following topics:

• Introduction

• Chapter Outline

Introduction
This section is intended as a bird's-eye view of the Toolkit for new users, and to give quick access to
important reference links for experienced users. It lays out the general roadmap of tasks required to get
going, giving links to take the reader to detailed discussions and supplying a number of simple, concrete
test applications.
Note: Much of this material is platform-neutral, although the discussion is Unix-centric. Windows or Mac
users would also benefit from reading the installation instructions specific to those systems and, where
applicable, how to use CVS with MS Windows and Mac OS.

Chapter Outline
The following is an outline of the topics presented in this chapter:

• Quick Start

• Example Applications

• Source Tree Availability

• FTP Availability

• CVS Availability

• Availability via Shell Scripts

• Source Tree Contents

• Top-Level Source Organization

• The Core NCBI C++ Toolkit

C++ Toolkit Book Getting Started

2-2

• Source Tree for Individual Projects

• The Makefile Templates

• The New Module Stubs

• Decide Where You Will Work (in-tree, in a subtree, out-of-tree)

• Basic Installation and Configuration Considerations

• Basics of Using the C++ Toolkit

• Compiling and Linking with make

• Makefile Customization

• Basic Toolkit Coding Infrastructure

• Key Classes

• The Object Manager and datatool

• Debugging and Diagnostic Aids

• Coding Standards and Guidelines

• Noteworthy Files

Quick Start
A good deal of the complication and tedium of getting started has thankfully been wrapped by a
number of shell scripts. They facilitate a 'quick start' whether starting anew or within an existing
Toolkit work environment. ('Non-quick starts' sometimes cannot be avoided, but they are consid-
ered elsewhere.)

1. Get the Source Tree (see Figure 1)

• Download via FTP, or

• Run cvs_core.sh(requires a CVS repository containing the C++ Toolkit; for NCBI
users, the repository is at $CVSROOT/internal/c++)

2. Configure the build tree (see Figure 2)

C++ Toolkit Book Getting Started

2-3

• Use the configure script, or

• Use a compiler-specific wrapper script scripts/compilers/*.sh.

3. Build the C++ Toolkit from makefiles and meta-makefiles(if required)

• make all_r for a recursive make, or

• make all to make only targets for the current directory.

4. Work on your new or existing application or library the scripts new_project.sh and
(for an existing Toolkit project) import_project.sh help to set up the appropriate make-
files and/or source.

C++ Toolkit Book Getting Started

2-4

Figure 1: NCBI C++ Source Tree

C++ Toolkit Book Getting Started

2-5

Figure 2: NCBI C++ Build Tree

In a nutshell, that's all it takes to get up and running. The download, configuration, installation and
build actions are shown for two cases in this sample.

The last item, employing the Toolkit in a project, completely glosses over the substantial
issue of how to use the installed Toolkit. Where does one begin to look to identify the functionality
to solve your particular problem, or indeed, to write the simplest of programs? "Basics of Using

C++ Toolkit Book Getting Started

2-6

the C++ Toolkit" will deal with those issues. Investigate these and other topics with the set of
sample applications. See Examples or Tests for further cases that employ specific features of the
NCBI C++ Toolkit.

Example Applications
The suite of application examples below highlight important areas of the Toolkit and can be used
as a starting point for your own development. Note that you may generate the sample application
code by running the new_project.sh script for that application. The following examples are now
available:

• app/basic A generic application to demonstrate the use of key Toolkit classes.

• app/cgi Presents the Toolkit infrastructure required to write Web-enabled CGI applications.

• app/dbapi Presents the Toolkit infrastructure required to write database applications.

• app/gui Presents the Toolkit infrastructure required to write GUI applications.

• app/objects Presents the Toolkit infrastructure required to write applications using ASN.1
objects.

• app/objmgr The Toolkit manipulates biological data objects in the context of an Object
Manager class (CObjectManager). This example shows how to build an application using
the object manager.

• app/alnmgr Presents the Toolkit infrastructure required to write alignment manager appli-
cations.

To build an example use its accompanying Makefile.

Source Tree Availability
The source tree is available through FTP, CVS and by running special scripts. The following sub-
sections discuss these topics in more detail:

• FTP Availability

• CVS Availability

• Availability via Shell Scripts

FTP Availability
The Toolkit source is available via ftp at ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/
[ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/], and the archives available, with unpack-
ing instructions, are listed on the download page. If you plan to modify the Toolkit source in any

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/basic/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/cgi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/dbapi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/cgi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/objmgr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/objects
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/

C++ Toolkit Book Getting Started

2-7

way with the ftp'd code, it is strongly advised that it be placed under a source code control system
(prefereably CVS) so that you can rollback to an earlier revision without having to ftp the entire
archive once again.

CVS Availability
NCBI users can obtain the source tree directly from the internal CVS repository. Although CVS is
historically a Unix-centric utility, MS Windows and Mac OS users can also work with the CVS
tree.

Availability via Shell Scripts
The various shell scripts in $NCBI/c++/scripts tailor the working codebase and can prepare the
work environment for new projects. Except where noted, an active Toolkit CVS repository is
required, and obviously in all cases a version of the Toolkit must be accessible. Be certain the
$CVSROOT environment variable points at the correct CVS repository before running the scripts.

• cvs_core.sh (or cvs_core.bat under MS Windows). Details on cvs_core.sh are dis-
cussed in a later chapter.

• import_project.sh. Details on import_project.sh are discussed in a later chapter.

• new_project.sh. No CVS needed. Details on new_project.sh are discussed in a later
chapter.

• update_core.sh and update_projects.sh. Details on update_core.sh and
update_projects.sh are covered in later chapter.

Source Tree Contents
The following topics are discussed in this section:

• Top-Level Source Organization

• The Core NCBI C++ Toolkit

• Source Tree for Individual Projects

• The Makefile Templates

• The New Module Stubs

Top-Level Source Organization
The NCBI C++ Toolkit source tree (see Figure 1) is organized as follows:

C++ Toolkit Book Getting Started

2-8

• src/ -- a hierarchical directory tree of NCBI C++ projects. Contained within src are all
source files (*.cpp, *.c), along with private header files (*.hpp, *.h), makefiles (Makefile.*,
includingMakefile.mk), scripts (*.sh), and occasionally some project-specific data

• include/ -- a hierarchical directory tree whose structure mirrors the src directory tree. It con-
tains only public header files (*.hpp, *.h). Example:include/corelib/ contains public headers
for the sources located in src/corelib/

• scripts/ -- auxiliary scripts, including those to help manage interactions with the NCBI CVS
code repository, such as verify links import_project.sh, new_project.sh, cvs_core.sh,
etc.

• files for platform-specific configuration and installation:

• compilers/ -- directory containing compiler-specific configure wrappers (*.sh) and
pre-built configuration headers (ncbiconf.*) for some platforms

• configure -- a multi-platform configuration shell script (generated from template
configure.ac using autoconf)

• various scripts and template files used by configure, autoconf and autoheader

• doc/ -- NCBI C++ documentation, including a library reference, configuration and installa-
tion instructions, example code and guidelines for everybody writing code for the NCBI C+
+ Toolkit.

The Core NCBI C++ Toolkit
The 'core' libraries of the Toolkit provide users with a highly portable set of functionality. The fol-
lowing projects comprise the portable core of the Toolkit:

corelib connect cgi html util hello

Consult the library reference (Part 3 of this book) for further details.

Source Tree for Individual Projects
For the overall NCBI C++ source tree structure see Top-Level Source Organization above.

An individual project contains the set of source code and/or scripts that are required to build a
Toolkit library or executable. In the NCBI source tree, projects are identified as sub-trees of the
srcand include directories of the main C++ tree root. For example, corelib and objects/
objmgr are both projects. However, note that a project's code exists in two sibling directories:

the public headers in include/ and the source code, private headers and makefiles in src .
The contents of each project's source tree are:

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/manual/autoconf/html_node/autoconf_30.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/

C++ Toolkit Book Getting Started

2-9

• *.cpp, *.hpp -- project's source files and private headers

• Makefile.in -- a meta-makefile to specify which local projects (described in Makefile.*.in)
and sub-projects(located in the project subdirectories) must be built

• Makefile.*.lib, Makefile.*.app -- customized makefiles to build a library or an application

• Makefile.* -- "free style" makefiles

• sub-project directories (if any)

The Makefile Templates
Each project is built by customizing a set of generic makefiles. These generic makefile templates
(Makefile.*.in) are found in srcand help to control the assembly of the entire Toolkit via recursive
builds of the individual projects. (The usage of these makefiles and other configurations issues
are summarized below and detailed on the Working with Makefiles page.)

• Makefile.in -- makefile to perform a recursive build in all project subdirectories

• Makefile.meta.in -- included by all makefiles that provide both local and recursive builds

• Makefile.mk.in -- included by all makefiles; sets a lot of configuration variables

• Makefile.lib.in -- included by all makefiles that perform a "standard" library build, when
building only static libraries.

• Makefile.dll.in -- included by all makefiles that perform a "standard" library build, when
building only shared libraries.

• Makefile.both.in -- included by all makefiles that perform a "standard" library build, when
building both static and shared libraries.

• Makefile.lib.tmpl.in -- serves as a template for the project customized makefiles (Makefile.*.
lib[.in]) that perform a "standard" library build

• Makefile.app.in -- included by all makefiles that perform a "standard" application build

• Makefile.lib.tmpl.in -- serves as a template for the project customized makefiles (Makefile.*.
app[.in]) that perform a "standard" application build

• Makefile.rules.in, Makefile.rules_with_autodep.in -- instructions for building object files;
included by most other makefiles

C++ Toolkit Book Getting Started

2-10

The New Module Stubs
A Toolkit module typically consists of a header (*.hpp) and a source (*.cpp) file. Use the stubs
provided, which include boilerplate such as the NCBI disclaimer and CVS revision information, to
easily start a new module. You may also consider using the sample code described above for
your new module.

Decide Where You Will Work (in-tree, in a subtree, out-of-tree)
Depending on how you plan to interact with the NCBI C++ Toolkit source tree, the Toolkit has
mechanisms to streamline how you create and manage projects. The simplest case is to work
out-of-tree in a private directory. This means that you are writing new code that needs only to link
with pre-built Toolkit libraries. If your project requires the source for a limited set of Toolkit
projects it is often sufficient to work in a subtree of the Toolkit source distribution.

Most users will find it preferable and fully sufficient to work in a subtree or a private directory.
Certain situations and users (particularly Toolkit developers) do require access to the full Toolkit
source tree; in such instances one must work in-tree.

Basic Installation and Configuration Considerations
Note: Much of this discussion is Unix-centric, so Windows and Mac users would also benefit from
reading the installation instructions specific to those systems.

The configuration and installation process is automated with the configure script and its
wrappers in the compilers directory. These scripts handle the compiler- and platform-dependent
Toolkit settings and create the build tree (see Figure 2) skeleton. The configured build tree,
located in <builddir>, is populated with customized meta-makefile, headers and source files. Most
system-dependence has been isolated in the <builddir>/inc/ncbiconf.h header. By running make
all_r from <builddir>, the full Toolbox is built for the target platform and compiler combination.

Summarized below are some basic ways to control the installation and configuration process.
More comprehensive documentation can be found at config.html.

• A Simple Example Build

• configure Options View the list of options by running

configure --help

• Enable/Disable Debugging

• Building Shared and/or Static Libraries Shared libraries (DLL's) can be used in Toolkit
executables and libraries for a number of tested configurations. Note that to link with the
shared libraries at run time a valid runpath must be specified.

C++ Toolkit Book Getting Started

2-11

• Influencing configure via Environment Variables Several environment variables control
the tools and flags employed by configure. The generic ones are: CC, CXX, cpp, AR,
RANLIB, STRIP, CFLAGS, CXXFLAGS, cppFLAGS, LDFLAGS, LIBS. In addition,

you may manually set various localization environment variables.

• Multi-Thread Safe Compilation

• Controlling Builds of Optional Projects You may selectively build or not build one of the
optional projects ("serial", "ctools", "gui", "objects", "internal") with configure flags. If an
optional project is not configured into your distribution, it can be added later using the
import_projects script.

• Adjust the Configuration of an Existing Build If you need to update or change the con-
figuration of an existing build, use the reconfigure.sh or relocate.sh script.

• Working with Multiple build trees Managing builds for a variety of platforms and/or com-
piler environments is straightforward. The configure/install/build cycle has been designed
to support the concurrent development of multiple builds from the same source files. This
is accomplished by having independent build trees that exist as sibling directories. Each
build is configured according to its own set of configuration options and thus produces dis-
tinct libraries and executables. All builds are nonetheless constructed from the same
source code in $NCBI/c++/{src, include}.

Basics of Using the C++ Toolkit
The following topics are discussed in this section:

• Compiling and Linking with make

• Makefile Customization

• Basic Toolkit Coding Infrastructure

• Key Classes

• The Object Manager and datatool

• Debugging and Diagnostic Aids

• Coding Standards and Guidelines

Compiling and Linking with make
The NCBI C++ Toolkit uses the standard Unix utility make to build libraries and executable code,
using instructions found in makefiles. More details on compiling and linking with make can be
found in a later chapter.

To initiate compilation and linking, run make:

C++ Toolkit Book Getting Started

2-12

make -f <Makefile_Name> [<target_name>]

When run from the top of the build tree, this command can make the entire tree (with target
all_r). If given within a specific project subdirectory it can be made to target just the that project.
The Toolkit has in its src directory templates (e.g., Makefile.*.in) for makefiles and meta-makefiles
that define common file locations, compiler options, environment settings, and standard make
targets. Each Toolkit project has a specialized meta-makefile in its srcdirectory. The relevant
meta-makefile templates for a project, e.g., Makefile.in, are customized by configure and placed
in its build tree. For new projects, whether in or out of the C++ Toolkit tree, the programmer must
provide either makefiles or meta-makefiles.

Makefile Customization
Fortunately, for the common situations where a script was used to set up your source, or if you
are working in the C++ Toolkit source tree, you will usually have correctly customized makefiles in
each project directory of the build tree. For other cases, particularly when using the new_project.
sh script, some measure of user customization may be needed. The more frequent customiza-
tions involve (see "Working with Makefiles" or "Project makefiles" for a full discussion):

• meta-makefile macros: APP_PROJ, LIB_PROJ, SUB_PROJ, USR_PROJ Lists of appli-

cations, libraries, sub-projects, and user projects, respectively, to make.

• Library and Application macros: APP, LIB, LIBS, OBJ, SRC List the application name

to build, Toolkit library(ies) to make or include, non-Toolkit library(ies) to link, object files to
make, and source to use, respectively.

• Compiler Flag Macros: CFLAGS, cppFLAGS, CXXFLAGS, LDFLAGS Include or override

C compiler, C/C++ preprocessor, C++ compilier, and linker flags, respectively. Many more
localization macros are also available for use.

• Altering the Active Version of the Toolkit You can change the active version of NCBI C++
toolkit by manually setting the variable $(builddir) in Makefile.foo_[app|lib] to the desired
toolkit path, e.g.: builddir = $(NCBI)/c++/GCC-Release/build.Consult this list or,

better, look at the output of 'ls -d $NCBI/c++/*/build' to see those pre-built Toolkit

builds available on your system.

Basic Toolkit Coding Infrastructure
Summarized below are some features of the global Toolkit infrastructure that users may com-
monly employ or encounter.

C++ Toolkit Book Getting Started

2-13

• The NCBI Namespace Macros The header ncbistl.hpp defines three principal namespace
macros: NCBI_NS_STD, NCBI_NS_NCBI and NCBI_USING_NAMESPACE_STD. Respec-

tively, these refer to the standard C++ std:: namespace, a local NCBI namespace ncbi:: for
Toolkit entities, and a namespace combining the names from NCBI_NS_STD and

NCBI_NS_NCBI.

• Using the NCBI Namespaces Also in ncbistl.hpp are the macros BEGIN_NCBI_SCOPE
and END_NCBI_SCOPE. These bracket code blocks which define names to be included in

the NCBI namespace, and are invoked in nearly all of the Toolkit headers (see example).
To use the NCBI namespace in a code block, place the USING_NCBI_SCOPE macro

before the block references its first unqualified name. This macro also allows for unquali-
fied use of the std:: namespace. Much of the Toolkit source employs this macro (see
example), although it is possible to define and work with other namespaces.

• Configuration-Dependent Macros and ncbiconf.h#ifdef tests for the configuration-
dependent macros, for example _DEBUG or NCBI_OS_UNIX, etc., are used throughout the

Toolkit for conditional compilation and accommodate your environment's requirements.
The configure script defines many of these macros; the resulting #define's appear in the
ncbiconf.h header and is found in the <builddir>/inc directory. It is not typically included
explicitly by the programmer, however. Rather, it is included by other basic Toolkit headers
(e.g., ncbitype.h, ncbicfg.h, ncbistl.hpp) to pick up configuration-specific features.

• NCBI Types (ncbitype.h, ncbi_limits.[h|hpp]) To promote code portability developers
are strongly encouraged to use these standard C/C++ types whenever possible as they
are ensured to have well-defined behavior throughout the Toolkit. Also see the current
type-use rules. The ncbitype.h header provides a set of fixed-size integer types for special
situations, while the ncbi_limits.[h| hpp] headers set numeric limits for the supported types.

• The ncbistd.hpp header The NCBI C++ standard #include's and #defin'itions are found in
ncbistd.hpp, which provides the interface to many of the basic Toolkit modules. The explicit
NCBI headers included by ncbistd.hpp are: ncbitype.h, ncbistl.hpp, ncbistr.hpp, ncbidbg.
hpp, ncbiexpt.hpp and ncbi_limits.h.

• Portable Stream Handling Programmers can ensure portable stream and buffer I/O
operations by using the NCBI C++ Toolkit stream wrappers, typedef's and #define's
declared in the ncbistre.hpp. For example, always use CNcbiIstream instead of YourFa-
voriteNamespace::istream and favor NcbiCin over cin. A variety of classes that perform
case-conversion and other manipulations in conjunction with NCBI streams and buffers are
also available. See the source for details.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistl.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistl.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/find?string=ncbiconf.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbitype.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistd.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistre.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistre.hpp

C++ Toolkit Book Getting Started

2-14

• Use of the C++ STL (Standard Template Library) in the Toolkit The Toolkit employs the
STL's set of template container classes, algorithms and iterators for managing collections
of objects. Being standardized interfaces, coding with them provides portability. However,
one drawback is the inability of STL containers to deal with reference objects, a problem
area the Toolkit's CRef and CObject classes largely remedy.

• Serializable Objects, the ASN.1 Data Types and datatool The ASN.1 data model for

biological data underlies all of the C and C++ Toolkit development at NCBI. The C++
Toolkit represents the ASN.1 data types as serializable objects, that is, objects able to
save, restore, or transmit their state. This requires knowledge of an object's type and as
such a CTypeInfo object is provided in each class to encapsulate type information.
Additionally, object stream classes (CObject[IO]Stream, and subclasses) have been
designed specifically to perform data object serialization. The nuts-and-bolts of doing this
has been documented on theProcessing Serial Data page, with additional information
about the contents and parsing of ASN.1-derived objects in Traversing a Data Structure.
Each of the serializable objects appears in its own subdirectory under [src| include]/
objects. These objects/* projects are configured differently from the rest of the Toolkit,

in that header and source files are auto-generated from the ASN.1 specifications by the
datatool program. The --with-objects flag to configure also directs a build of the user
classes for the serializable objects.

Key Classes
For reference, we list some of the fundamental classes used in developing applications with the
Toolkit. Some of these classes are described elsewhere, but consult the library reference (Part 3
of this book) and the source browser for complete details.

• CNcbiApplication (abstract class used to define the basic functionality and behavior of
an NCBI application; this application class effectively supercedes the C-style main
() function)

• CArgDescriptions, CArgs, and CArgValue (command-line argument processing)

• CNcbiEnvironment (store, access,and modify environment variables)

• CNcbiRegistry (load, access, modify and store runtime information)

• CNcbiDiag (error handling for the Toolkit;)

• CObject (base class for objects requiring a reference count)

• CRef (a reference-counted smart pointer; particularly useful with STL and template
classes)

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/DATAMODL.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/

C++ Toolkit Book Getting Started

2-15

• CObject[IO]Stream (serialized data streams)

• CTypeInfo and CObjectTypeInfo (Runtime Object Type Information; extensible to user-
defined types)

• CObjectManager, etc. (classes for working with biological sequence data)

• CCgiApplication, etc. (classes to create CGI and Fast-CGI applications and handle CGI
Diagnostics)

• CNCBINode, etc. (classes representing HTML tags and Web page content)

• Iterator Classes (easy traversal of collections and containers)

• Exception Handling (classes, macros and tracing for exceptions)

The Object Manager and datatool
The datatool processes the ASN.1 specifications in the src/objects/directories and is the C++

Toolkit's analogue of the C Toolkit's asntool. The goal of datatool is to generate the class

definitions corresponding to each ASN.1 defined data entity, including all required type informa-
tion. As ASN.1 allows data to be selected from one of several types in a choice element, care
must be taken to handle such cases.

The Object Manager is a C++ Toolkit library whose goal is to transparently download data
from the GenBank database, investigate bio sequence data structure, retrieve sequence data,
descriptions and annotations. In the library are classes such as CDataLoader and CDataSource
which manage global and local accesses to data, CSeqVector and CSeqMap objects to find and
manipulate sequence data, a number of specialized iterators to parse descriptions and annota-
tions, among others. The CObjectManager and CScope classes provide the foundation of the
library, managing data objects and coordinating their interactions.

An example, jump-start and Object Manager FAQ are all available to help new users.

Debugging and Diagnostic Aids
The Toolkit has a number of methods for catching, reporting and handling coding bugs and
exceptional conditions. During development, a debug mode exists to allow for assertions, traces
and message posting. The standard C++ exception handling (which should be used as much as
possible) has been extended by a pair of NCBI exception classes, CErrnoException and
CParseException and additional associated macros. Diagnostics, including an ERR_POST
macro available for routine error posting, have been built into the Toolkit infrastructure.

For more detailed and extensive reporting of an object's state (including the states of any
contained objects), a special debug dump interface has been implemented. All objects derived
from the CObject class, which is in turn derived from the abstract base class CDebugDumpable,
automatically have this capability.

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/internal/objmgr_lab/sample/task.cpp

C++ Toolkit Book Getting Started

2-16

Coding Standards and Guidelines
All C++ source in the Toolkit has a well-defined coding style which shall be used for new contribu-
tions and is highly encouraged for all user-developed code. Among these standards are

• variable naming conventions (for types, constants, class members, etc.)

• using namespaces and the NCBI name scope

• code indentation (4-space indentation, no tab symbols)

• declaring and defining classes and functions

Noteworthy Files
A list of important files is given in Table 1.

Table 1. Noteworthy Files

Filename (relative to $NCBI/c++) Description

configurecompilers/<compiler_name>.sh Use the configure shell script, or one of its com-
piler-specific wrappers, to fully configure and
install all files required to build the Toolkit.

scripts/cvs_core.{sh|bat} Unix/Windows scripts to obtain the core, portable
portions of the Toolkit from an existing CVS
repository.

scripts/import_project Import only an existing Toolkit project into an inde-
pendent subtree of your current Toolkit source
tree. (Requires a CVS source repository.)

scripts/update_{core|projects} Update your local copy of either the core Toolkit or
set of specified projects. (Requires a CVS
source repository.)

scripts/new_project Set up a new project outside of the NCBI C++
Toolkit tree to access pre-built version of the
Toolkit libraries. Sample code can be requested
to serve as a template for the new module.

src/<project_dir>/Makefile.in src/<project_dir>/ Makefile.
<project>.{app, lib}

Customized meta-makefile template and the cor-
responding datafile to provide project-specific
source dependancies, libraries, compiler flags,
etc. This information is accessed by configure
to build a projects's meta-makefile (see below).

doc/framewrk.{cpp|hpp} Basic templates for source and header files that
can be used when starting a new module.
Includes common headers, the NCBI disclaimer
and CVS keywords in a standard way.

C++ Toolkit Book Getting Started

2-17

Filename (relative to $NCBI/c++) Description

CHECKOUT_STATUS This file summarizes the local source tree struc-
ture that was obtained when using one of the
shell scripts in scripts. (Requires a CVS source
repository.)

Build-specific Files (relative to $NCBI/c++/
<builddir>)

Description

Makefile Makefile.mk Makefile.meta These are the primary makefiles used to build the
entire Toolkit (when used recursively). They are
customized for a specific build from the corre-
sponding *.in templates in $NCBI/c++/src.
Makefile is the master, top-level file, Makefile.
mk sets many make and shell variables and
Makefile.meta is where most of the make tar-
gets are defined.

<project_dir>/Makefile <project_dir>/ Makefile.
<project>_{app, lib}

Project-specific custom meta-makefile and make-
files, respectively, configured from templates in
the src/ hierarchy and any pertinent src/
<project_dir>/Makefile.<project>.{app, lib} files
(see above).

inc/ncbiconf.h Header that #define's many of the build-specific
constants required by the Toolkit. This file is
auto-generated by the configure script, and
some pre-built versions do exist in compilers.

reconfigure.sh Update the build tree due to changes in or the
addition of configurable files (*.in files, such as
Makefile.in or the meta-makefiles) to the source
tree.

relocate.sh Adjust paths to this build tree and the relevant
source tree.

corelib/ncbicfg.c Define and manage the runtime path settings. This
file is auto-generated by the configure script.

status/config.{cache|log|status} These files provide information on configure's
construction of the build tree, and the cache of
build settings to expedite future changes.

